Graphics with Cairo

Michael Maclean
Dutch PHP Conference 2010



Who am I?

* PHP developer for a number of years
e Recently moved to doing work in PECL

e Mainly working on Cairo and associated
libraries



What is Cairo?

It's a vector graphics library

Good for creating graphics, not so good for
manipulating photos

Written by the FreeDesktop.org project, dual-
licenced as LGPL v2.1 or MPL v1.1



Vector vs. Raster

» Raster graphics are bitmaps — a big matrix of
pixels - this is what photos are generally stored
as

* JPEG, PNG, GIF etc are all raster graphic formats

* Vector graphics are descriptions of the lines, and
colours that make up an image

* SVG, WME PostScript and PDF are vector formats



Who uses it?




Why do you want to use it?

There are a number of reasons why you should
consider it...



I[t's fast.

PHP image library benchmark

fﬁ& run in milliseconds
1.

Cairo =D

Flash GDno S iMagick

Graphic created by Kore Nordmann



[t gives nice output

GD, while it's useful, can't do antialiasing

It can't do gradients

It only does raster graphics

Cairo can and does do all of the above



Output example

Access statistics
Explorer: 10917 (33. 5%)

era: 1464

%z%a%: 652. s
GD 1.151:%““'

Mozilla: 19113 (58.6%)

Access statistics
Explorer: 10017 (33.5%)

Opera: 1464 (4.5%)
Safarni: 632 (2.0%)
Kongueror: 474 {1.5%)

Cairo

Mozilla: 19113 {58.6%)

Graphics generated by ezcGraph



It's Free Software

 If you're using a recent Linux distro, you might
well have the libraries installed already

* If not, you can download it for Windows

 (I'm not sure about MacOS X...)



How do you use it with PHP?

There have been several Cairo extensions
developed at various times for PHP

PECL/Cairo aims to be “definitive”

It provides both object-oriented and procedural
APIs

(I'm only going to demo the object-oriented one)



Installation

e UNIX/Linux — use PECL

 Windows — you can download it from
http://perisama.net/cairo/

 Intrepid folk — grab it from PECL SVN and
compile it yourself

 If you do this, please run the tests!


http://perisama.net/cairo/

Using Cairo

First, I need to explain a few basics



Surfaces

These are what you draw on

They represent an image of a certain size

You can also use them as the “paint” when
drawing on other surfaces



Surfaces

You create them using the constructor:

$s = new
CairoImageSurface(CairoFormat: :ARGB32,
1000, 1000);

This creates a new Image surface, in 32-bit colour,
1000x1000 pixels in size

There are different Surface classes for Images, PDFs, etc.



Surfaces

* The other surface types have different
constructors

* PDE PostScript, and SVG surface constructors
take a filename or a file resource

* They don't have colour formats, and output data
directly to the file or file resource as you draw

* You can write directly to php://output if you
like, and send the right header



Contexts

Contexts are what you use to do the drawing
operations.

They're objects that have methods to draw on
surfaces, set colour sources, move around the
surface, etc.

You create a context by passing the constructor
an existing CairoSurface object

$c = new CairoContext(%$s);



Contexts

* Once you have a context, you can draw on your
surface.

* The context has methods to set various
properties:

 The colour (referred to as a “source”)

* The line style, width, end caps, fill style, etc.



Basic context methods

* moveTo() / relMoveTo() - move to a point
 lineTo() - relLineTo() draw a line to a point
e rectangle() - draw a rectangle

e arc() / arcNegative() - draw an arc

o stroke() / strokePreserve() - stroke the current
path

o fill() / fillPreserve() - fill the current path



An example

$s = new CairoImageSurface(
CairoFormat: :ARGB32, 400, 400);
$c = new CairoContext(%$s);
$c->T1ill();
$c->setSourceRGB(1l, 0, 0);
$c->setLineWidth(50);
$c->arc(200, 200, 100, 0, 2 * M PI);
$c->stroke();
$c->setSourceRGB(0, 0, 0.6);
$c->rectangle(0, 160, 400, 75);
$c->T1ill();

header("Content-type: image/png");
$s->writeToPng("php://output");



The result




Where's the text?

The Cairo library itself supports two APIs for
text; the “toy” API and the “real” API

The toy API is quite sufficient for simple things

It's also the only one implemented in
PECL/Cairo so far

CairoContext::showText() and
CairoContext::textPath() are the main methods



Fonts

* There are a couple of ways of selecting fonts at
the moment

e CairoContext::selectFontFace() will attempt to
select the font you specify, and lets you choose
italic or bold if you want

 The CSS2 names (“sans”, “serif”, “monospace”
etc.) are likely to be available anywhere



Adding text to the example

After the final fill(), we add:

$c->selectFontFace(
"sans", CairoFontSlant: :NORMAL,
CairoFontWeight: :NORMAL) ;

$c->moveTo(5, 215);
$c->setSourceRGB(1l, 1, 1);
$c->setFontSize(48):
$c->showText ("UNDERGROUND") ;



The slightly cheesy result

UNDERGROUND




Using local fonts

* There is also a font class that uses FreeType to
load any font file that FreeType can read (which
is most of them)

$s = new

CairolImageSurface(CairoFormat: :ARGB32, 200,
100) ;

$c = new CairoContext($s);

$f = new CairoFtFontFace("vollkorn.otf");

$c->setFontFace($T);

$c->moveTo (10, 10);

$c->showText("Hello world");



Complex text handling

e Cairo doesn't really do text layout, it's designed
for graphics

* You have to do the positioning work yourself

e Or you can use an existing library like Pango to
do it...

e ...but that's another talk (or ask me afterwards!)



Patterns

e Patterns are the “ink” used when drawing

e setSourceRGB() and setSourceRGBA() are
shortcuts to set solid colour patterns

e You don't have to use solid colours as sources
* You can create gradients, either linear or radial

* You can use other surfaces, too



Linear gradients

* They are a progression from one colour to
another along a line

* You create a CairoLinearGradient object, with a
pair of coordinates representing the line

* Then, add stops, specifying the distance along
the line and the colour in RGBA

e Note the line length is normalized to 1.0 when you
do that



Linear gradient example

$p = new CairolLinearGradient(0, -10, 0, 10);
$p->addColorStopRgba(0,1,0,0,1);
$p->addColorStopRgba(1,0,0,1,0.5);
$c->setSource($pat);

$c->paint();




Radial gradients

* These are described as having one circle of one
colour inside another

* You pass the XY coordinates of the two circles,
and their radii, as arguments to the constructors

* Then you add colour stops, as before



Radial gradient example

new CaliroRadialGradient (200, 100, 50,
200, 100, 200);

1, 0, 0, 1);

O, 0, 1, 1):

$p

$p->addColorStopRGBA(0,
$p->addColorStopRGBA(1,
$c->setSource($p);
$c->paint();




Using other surfaces

* As I mentioned before, you can use other
surfaces as sources

* You can also create new Image surfaces by
loading PNG files

* (Support for loading other filetypes is on the way...)



Example

$source = CairoImageSurface: :createFromPNG (
dirname( FILE ) . "/php-logo.png");

$c->setSourceSurface($source);

$c->arc(60, 33, 40, 0, 2 * M PI);

$c->Ffill();




Other surface types

* The other two surfaces that are probably useful
are PDF and SVG

e There are a couple of limitations, unfortunately

e The Cairo library has no way to create anchors in
PDFs or SVGs, so you can't create hyperlinks (yet!)

* Both of these are written straight to a file as you

create them, which you can overcome with the
PHP streams API



Creating PDFs

header("Content-Type: application/pdf");
header("Content-Disposition: attachment; filename=cairo-
pdf.pdf");
$s = new CairoPdfSurface("php://output”,

210 * 2.83, 297 * 2.83);
$c = new CairoContext($s);

$c->setFontSize(48) ;
$c->moveTo (10, 100);
$c->showText("Hello world");
$c->showPage();

$s->setSize (297 * 2.83, 210 * 2.83);
$c->moveTo (10, 100);

$c->showText("And this should be page 2.");
$c->showPage();



More on contexts

* Contexts have an internal stack, which means
you can save a state and restore it later

e This is handy in certain situations, but mainly
when using...



Transformations

* Contexts let you draw using one set of
coordinates, but have them appear on the
surface in another

e This is cool where you have a method to draw a
certain item that you might want over and over
in different places or orientations



Transformations

e CairoContext::translate() moves the origin
(normally top left) to somewhere else

e CairoContext::scale() scales the coordinates so
what you draw ends up at a different size on the
surface

e CairoContext::rotate() rotates the coordinates to
draw at a different angle



save() and restore()

 You can use the stack to save the current
transformation, so you can go and do something
else and restore later



Transformation example

function drawLogo(%$c) {
$c->save();
$c->scale(1.0, 1.0);
$c->setSourceRGB(1, 0, 0);
$c->setLineWidth(10);
$c->arc(0, 0, 25, 0, 2 * M PI);
$c->stroke();
$c->setSourceRGB(0, 0, 0.6);
$c->rectangle(-42.5, -7.5, 85, 15);
$c->fill();
$c->setSourceRGB(1, 1, 1);
$c->moveTo(-41, 4);
$c->showText ("UNDERGROUND") ;
$c->restore();

}

$c->translate(75, 75);

for($i = 0; $i < 4; $i++) {
drawLogo($%c);
$c->translate(250, 0);
$c->rotate(M PI / 2);



Example output

S ¢
® &




Operators

* Normally, Cairo will draw on top of whatever is
on the surface

* You can change this, using the operators, which
are specified using CairoContext::setOperator()

* There are a few operators you can choose from



Basic operators

» CairoOperator::OVER - the default — replace
destination

» CairoOperator::CLEAR - clear (erase) the
destination

» CairoOperator::IN — draw where there is already
something on the destination

o CairoOperator::OUT — draw where there isn't
already something on the destination

o ...etc (check the manual, it's rather dull)



Operator examples

r

OVER CLEAR

I -

OouT




Any questions?



Thank you for listening

 http://kore-nordmann.de/blog/comparision_of php image libraries.html

Slides and demo code will appear online at
http://mgdm.net/talks/

Drop me a line on mgdm@php.net
or Twitter @mgdm
or mgdm on Freenode IRC

Give me feedback at http://joind.in/1540


http://kore-nordmann.de/blog/comparision_of_php_image_libraries.html
http://mgdm.net/talks/
mailto:mgdm@php.net
http://joind.in/1540

